嵌段共聚物(BCP)納米復(fù)合材料由于納米結(jié)構(gòu)形態(tài)以及碳納米管(CNTs)的定向摻入使得開發(fā)具有特殊熱、機(jī)械和電學(xué)性能的功能材料成為可能。CNTs具有優(yōu)良抗拉強(qiáng)度,優(yōu)異導(dǎo)電性,高導(dǎo)熱性,密度低等眾多特點(diǎn)。通過將CNTs選擇性地定向摻入到非混相共混物的合適相形態(tài)中,可以特異性地調(diào)整電學(xué)、熱學(xué)和力學(xué)性能。
碳納米管的長徑比較大阻礙了碳納米管在納米級BCP結(jié)構(gòu)域中的定向摻入,碳納米管的平均長度為1.5µm,明顯超過了嵌段共聚物相的結(jié)構(gòu)域尺寸。使用短CNTs比較容易將CNTs選擇性摻入嵌段共聚物,但隨著長徑比的減小,電滲透閾值增加,即需要更多的填料含量來生產(chǎn)導(dǎo)電復(fù)合材料。對碳納米管進(jìn)行不同時長的球磨處理,并分別與BCP進(jìn)行混合制備成復(fù)合分散體,利用LUMiSizer®分散體分析儀進(jìn)行分散穩(wěn)定性表征,研究不同研磨時間對穩(wěn)定性的影響。
1. 材料
市售多壁碳納米管(MWCNTs) NC7000TM:MWCNTs的碳純度為90%,比表面為250-300 m2/g。基體聚合物:聚苯乙烯-丁二烯基星形嵌段共聚物。
2. 碳納米管在聚合物溶液中的沉降分析
使用LUMiSizer® 610來表征CNT在聚合物溶液中的沉積行為,其可顯著影響溶劑流延膜中CNT分散和網(wǎng)絡(luò)形成的質(zhì)量。通過將每個分散體的樣品放置在橫截面為10×10mm的玻璃試管中,并在3000rpm的離心速度和20℃的溫度下離心10小時來研究沉降行為。離心分析儀LUMiSizer®即時測量了整個樣品長度上透射光的吸光度,并評估了分散體底部和液位之間樣品的空間和時間分辨消光曲線。為了表征分散穩(wěn)定性,在107mm和124mm的位置之間,即在玻璃比色杯的中間部分進(jìn)行積分透過率譜線分析。根據(jù)積分透光的初始斜率,可以確定CNT顆粒的沉積速率。低沉降速率對應(yīng)于高分散穩(wěn)定性,并且是由于良好的顆粒分散。在高沉降速率下,顆粒分散不足,剩余的較大團(tuán)聚體沉降較快。透光率譜線的形狀表示沉降的類型。在具有非常低顆粒濃度的多分散分散體中,分布由水平曲線組成。如果透光率譜線由平行的垂直曲線組成,則分散體要么是單峰分散體,其中具有相同尺寸和密度的剛性球形顆粒在離心場中遷移,要么是具有更高顆粒濃度的分散體,在其中形成相互阻礙并比初級顆粒更快沉積的團(tuán)聚體和網(wǎng)絡(luò)。
3. BCP/CNT復(fù)合材料的制備與表征
3.1 材料制備
將1wt %的聚合物加入到20ml甲苯中,磁力攪拌30分鐘;將0.1 - 2.0 wt%的MWCNTs預(yù)分散在20 mL甲苯中,超聲分散10分鐘。隨后,將聚合物溶液加入碳納米管分散體中,通過磁力攪拌混合30分鐘,再進(jìn)行超聲處理1分鐘,得到BCP/CNT復(fù)合材料。
3.2. 聚合物/碳納米管分散體的穩(wěn)定性表征
通過對BCP/CNT分散體進(jìn)行表征,以研究分散體的穩(wěn)定性和CNT在聚合物-甲苯溶液中的沉積行為。BCP/CNT分散體的透射曲線如圖1所示。當(dāng)包括NC7000和長達(dá)3小時的研磨CNT時,該譜線在離心開始時顯示出垂直譜線,在隨后的過程中顯示出水平曲線。對于含有球磨4.5小時或更長時間的CNT的分散體,圖譜主要由水平譜線組成。水平譜線表示CNT顆粒尺寸的多分散分布。垂直譜線說明了類似尺寸的大CNT團(tuán)聚體的初始強(qiáng)烈沉降。
圖1 BCP/CNT分散體對不同碳納米管粒徑組分的穩(wěn)定性圖譜:純NC 7000 (a)和研磨1.5 h (b)、3 h (c)、4.5 h (d)、6 h (e)、7.5 h (f)和13.5 h (g)的碳納米管;采用離心分析儀LUMiSizer®測定碳納米管在BCP/甲苯溶液中的沉降行為
圖2(a)BCP/CNT分散體的積分傳輸隨離心時間的變化;(b) 碳納米管在BCP-甲苯溶液中的沉積速率和沉積高度;(c) 離心10.7小時后BCP/CNT分散體的積分透光度
對于不同的球磨時間和NC7000,通過對107 mm和124 mm位置之間的透光圖譜進(jìn)行積分計算得出的積分透光率與離心時間的關(guān)系如圖2所示。CNT顆??梢愿鶕?jù)積分透射曲線的初始斜率計算,并且最初隨著研磨時間從664%/h(NC7000)顯著增加到1436%/h(BM_3h)。CNT研磨時間的進(jìn)一步增加導(dǎo)致沉積速率的顯著降低,對于含有CNTs BM_7.5h的分散體表現(xiàn)出2.4%/h。低沉積速率表明分散穩(wěn)定性顯著增強(qiáng)。
(a) (b) (c) (d) (e) (f) (f)
圖3 含有1 wt%的純凈NC7000 (a)和研磨1.5 h (b)、3 h (c)、4.5 h (d)、6 h (e)、7.5 h (f)和13.5 h (g)的BCP/CNT分散體的照片
沉積物的形成如圖3所示,顯示了離心后的分散體。沉積物的高度(以毫米為單位)是從124毫米位置后的液固相邊界(最后一條圖譜曲線的下降)和過渡到底部(最后上升曲線的峰值)之間的透射譜線中測量的,并顯示在圖2b的表中。沉積物的高度隨著CNTs的研磨時間的增加而不斷降低,主要是CNTs粉末的堆積密度隨研磨時間的增加而降低。
圖4 CNT粉末的SEM圖像:純NC7000(a)和研磨1.5h(b)、3h(c)、4.5h(d)、6h(e)、7.5h(f)和13.5h(g)
與純NC7000相比,BCP/CNT分散體的整體透射隨著CNT最長6小時研磨時間的增加而增加。一方面,CNT大小通過研磨過程實(shí)現(xiàn)縮短,但另一方面,NC7000由最初非常松散蓬松的CNT網(wǎng)絡(luò)被顯著壓縮,如CNT粉末的SEM照片所示(圖4)。這導(dǎo)致許多致密的團(tuán)聚體沉積得更快。此外,隨著CNT研磨時間的增加,沉淀過程的完成遲于純NC7000。積分透光譜線只有在測試時間較長時才達(dá)到其平臺。如果有更多的顆粒沉淀,這將導(dǎo)致更高的最終積分透光度。而研磨7.5小時的CNT的沉積行為是不同的。CNT在聚合物溶液中主要非常穩(wěn)定,這反映在低積分透射和深灰色分散中,如圖1所示。在長達(dá)13.5小時的CNT進(jìn)一步研磨過程中,強(qiáng)烈的壓縮導(dǎo)致再次形成更大、非常緊湊的團(tuán)聚體,并導(dǎo)致沉積速率和積分透光度的增加(圖2c)。
LUMiSizer®分散體分析儀能利用光譜的方式在短時間內(nèi)對碳納米管分散體的穩(wěn)定性進(jìn)行表征,定量表示穩(wěn)定性差異。
傳真:
郵箱:frank_li@hengzelab.com
地址:上海市浦東新區(qū)宣秋路139號1號樓208室